On time transformations for differential equations with state-dependent delay

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On fractional integro-differential equations with state-dependent delay

In this article, we deal with the existence of mild solutions for a class of fractional integro-differential equations with state-dependent delay. Our results are based on the technique of measures of noncompactness and Darbo’s fixed point theorem. An example is provided to illustrate the main result. AMS Subject Classifications: 26A33, 34A08, 34A37, 34G20, 34G25, 34H05, 34K09, 34K30.

متن کامل

State-dependent impulsive delay-differential equations

K e y w o r d s D e l a y , Differential equation, Impulses, Fixed point. 1. I N T R O D U C T I O N The object of this paper is to present existence and uniqueness results about the solution of a system of delay-differential equations with infinitely many state-dependent impulses. This type of problem is characterized by jumps in the solution of the system. The system is (s) = / ( t , x , ) + ...

متن کامل

On state-dependent delay partial neutral functional-differential equations

In this paper, we study the existence of mild solutions for a class of abstract partial neutral functional–differential equations with state-dependent delay. 2006 Elsevier Inc. All rights reserved.

متن کامل

Boundary layer phenomena for differential-delay equations with state-dependent time lags: III

We consider a class of singularly perturbed delay-differential equations of the form e ’ xðtÞ 1⁄4 f ðxðtÞ; xðt rÞÞ; where r 1⁄4 rðxðtÞÞ is a state-dependent delay. We study the asymptotic shape, as e-0; of slowly oscillating periodic solutions. In particular, we show that the limiting shape of such solutions can be explicitly described by the solution of a pair of so-called max-plus equations. ...

متن کامل

Boundary Layer Phenomena for Differential-Delay Equations with State-Dependent Time Lags, L

In this paper we begin a study of the differential-delay equation ex ' ( t ) = x ( t ) + f ( x ( t r ) ) , r = r ( x ( t ) ) . We prove the existence of periodic solutions for 0 < e < e0, where e0 is an optimal positive number. We investigate regularity and monotonicity properties of solutions x ( t ) which are defined for all t and of associated functions like tl (t) = t r ( x ( t ) ) . We beg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2014

ISSN: 2391-5455

DOI: 10.2478/s11533-013-0341-6